1 /**
2  * Associative Array utility functions
3  *
4  * License:
5  *   This Source Code Form is subject to the terms of
6  *   the Mozilla Public License, v. 2.0. If a copy of
7  *   the MPL was not distributed with this file, You
8  *   can obtain one at http://mozilla.org/MPL/2.0/.
9  *
10  * Authors:
11  *   Vladimir Panteleev <vladimir@thecybershadow.net>
12  */
13 
14 module ae.utils.aa;
15 
16 import std.algorithm;
17 import std.range;
18 import std.traits;
19 import std.typecons;
20 
21 // ***************************************************************************
22 
23 /// Polyfill for object.require
24 static if (!__traits(hasMember, object, "require"))
25 ref V require(K, V)(ref V[K] aa, K key, lazy V value = V.init)
26 {
27 	auto p = key in aa;
28 	if (p)
29 		return *p;
30 	return aa[key] = value;
31 }
32 
33 unittest
34 {
35 	int[int] aa;
36 	aa.require(1, 2);
37 	assert(aa[1] == 2);
38 	aa.require(2, 3) = 4;
39 	assert(aa[2] == 4);
40 	aa.require(1, 5);
41 	assert(aa[1] == 2);
42 	aa.require(1, 6) = 7;
43 	assert(aa[1] == 7);
44 }
45 
46 static if (!__traits(hasMember, object, "update"))
47 {
48 	/// Polyfill for object.update
49 	void updatePolyfill(K, V, C, U)(ref V[K] aa, K key, scope C create, scope U update)
50 	if (is(typeof(create()) : V) && is(typeof(update(aa[K.init])) : V))
51 	{
52 		auto p = key in aa;
53 		if (p)
54 			*p = update(*p);
55 		else
56 			aa[key] = create();
57 	}
58 
59 	/// Work around https://issues.dlang.org/show_bug.cgi?id=15795
60 	alias update = updatePolyfill;
61 }
62 
63 // https://github.com/dlang/druntime/pull/3012
64 private enum haveObjectUpdateWithVoidUpdate = is(typeof({
65 	int[int] aa;
66 	.object.update(aa, 0, { return 0; }, (ref int v) { });
67 }));
68 
69 static if (!haveObjectUpdateWithVoidUpdate)
70 {
71 	/// Polyfill for object.update with void update function
72 	void updateVoid(K, V, C, U)(ref V[K] aa, K key, scope C create, scope U update)
73 	if (is(typeof(create()) : V) && is(typeof(update(aa[K.init])) == void))
74 	{
75 		// We can polyfill this in two ways.
76 		// What's more expensive, copying the value, or a second key lookup?
77 		enum haveObjectUpdate = __traits(hasMember, object, "update");
78 		enum valueIsExpensiveToCopy = V.sizeof > string.sizeof
79 			|| hasElaborateCopyConstructor!V
80 			|| hasElaborateDestructor!V;
81 		static if (haveObjectUpdate && !valueIsExpensiveToCopy)
82 		{
83 			.object.update(aa, key, create,
84 				(ref V v) { update(v); return v; });
85 		}
86 		else
87 		{
88 			auto p = key in aa;
89 			if (p)
90 				update(*p);
91 			else
92 				aa[key] = create();
93 		}
94 	}
95 
96 	/// Work around https://issues.dlang.org/show_bug.cgi?id=15795
97 	alias update = updateVoid;
98 }
99 else
100 	alias updateVoid = object.update;
101 
102 // Inject overload
103 static if (__traits(hasMember, object, "update"))
104 	alias update = object.update;
105 
106 // ***************************************************************************
107 
108 /// Get a value from an AA, and throw an exception (not an error) if not found
109 ref auto aaGet(AA, K)(auto ref AA aa, auto ref K key)
110 	if (is(typeof(key in aa)))
111 {
112 	import std.conv;
113 
114 	auto p = key in aa;
115 	if (p)
116 		return *p;
117 	else
118 		static if (is(typeof(text(key))))
119 			throw new Exception("Absent value: " ~ text(key));
120 		else
121 			throw new Exception("Absent value");
122 }
123 
124 /// If key is not in aa, add it with defaultValue.
125 /// Returns a reference to the value corresponding to key.
126 ref V getOrAdd(K, V)(ref V[K] aa, auto ref K key, auto ref V defaultValue)
127 {
128 	return aa.require(key, defaultValue);
129 }
130 
131 /// ditto
132 ref V getOrAdd(K, V)(ref V[K] aa, auto ref K key)
133 {
134 	return getOrAdd(aa, key, V.init);
135 }
136 
137 unittest
138 {
139 	int[int] aa;
140 	aa.getOrAdd(1, 2) = 3;
141 	assert(aa[1] == 3);
142 	assert(aa.getOrAdd(1, 4) == 3);
143 }
144 
145 /// If key is not in aa, add it with the given value, and return true.
146 /// Otherwise, return false.
147 bool addNew(K, V)(ref V[K] aa, auto ref K key, auto ref V value)
148 {
149 	bool added = void;
150 	updateVoid(aa, key,
151 		delegate V   (       ) { added = true ; return value; },
152 		delegate void(ref V v) { added = false;               },
153 	);
154 	return added;
155 }
156 
157 unittest
158 {
159 	int[int] aa;
160 	assert( aa.addNew(1, 2));
161 	assert(!aa.addNew(1, 3));
162 	assert(aa[1] == 2);
163 }
164 
165 // ***************************************************************************
166 
167 struct KeyValuePair(K, V) { K key; V value; }
168 
169 /// Get key/value pairs from AA
170 KeyValuePair!(K, V)[] pairs(K, V)(V[K] aa)
171 {
172 	KeyValuePair!(K, V)[] result;
173 	foreach (key, value; aa)
174 		result ~= KeyValuePair!(K, V)(key, value);
175 	return result;
176 }
177 
178 /// Get key/value pairs from AA, sorted by keys
179 KeyValuePair!(K, V)[] sortedPairs(K, V)(V[K] aa)
180 {
181 	KeyValuePair!(K, V)[] result;
182 	foreach (key; aa.keys.sort)
183 		result ~= KeyValuePair!(K, V)(key, aa[key]);
184 	return result;
185 }
186 
187 /// Get values from AA, sorted by keys
188 V[] sortedValues(K, V)(in V[K] aa)
189 {
190 	V[] result;
191 	foreach (key; aa.keys.sort())
192 		result ~= aa[key];
193 	return result;
194 }
195 
196 /// Merge source into target. Return target.
197 V[K] merge(K, V)(auto ref V[K] target, in V[K] source)
198 {
199 	foreach (k, v; source)
200 		target[k] = v;
201 	return target;
202 }
203 
204 unittest
205 {
206 	int[int] target;
207 	int[int] source = [2:4];
208 	merge(target, source);
209 	assert(source == target);
210 
211 	target = [1:1, 2:2, 3:3];
212 	merge(target, source);
213 	assert(target == [1:1, 2:4, 3:3]);
214 
215 	assert(merge([1:1], [2:2]) == [1:1, 2:2]);
216 }
217 
218 /// Slurp a range of two elements (or two-element struct/class) into an AA.
219 auto toAA(R)(R r)
220 	if (is(typeof(r.front[1])))
221 {
222 	alias K = typeof(r.front[0]);
223 	alias V = typeof(r.front[1]);
224 	V[K] result;
225 	foreach (pair; r)
226 	{
227 		assert(pair.length == 2);
228 		result[pair[0]] = pair[1];
229 	}
230 	return result;
231 }
232 
233 /// ditto
234 auto toAA(R)(R r)
235 	if (is(typeof(r.front.tupleof)) && r.front.tupleof.length == 2 && !is(typeof(r.front[1])))
236 {
237 	return r.map!(el => tuple(el.tupleof)).toAA();
238 }
239 
240 unittest
241 {
242 	assert([[2, 4]].toAA() == [2:4]);
243 	assert([2:4].pairs.toAA() == [2:4]);
244 }
245 
246 /// Ensure that arr is non-null if empty.
247 V[K] nonNull(K, V)(V[K] aa)
248 {
249 	if (aa !is null)
250 		return aa;
251 	aa[K.init] = V.init;
252 	aa.remove(K.init);
253 	assert(aa !is null);
254 	return aa;
255 }
256 
257 unittest
258 {
259 	int[int] aa;
260 	assert(aa is null);
261 	aa = aa.nonNull;
262 	assert(aa !is null);
263 	assert(aa.length == 0);
264 }
265 
266 // ***************************************************************************
267 
268 // Helpers for HashCollection
269 private
270 {
271 	alias Void = void[0]; // Zero-sized type
272 	static assert(Void.sizeof == 0);
273 
274 	// Abstraction layer for single/multi-value type holding one or many T.
275 	// Optimizer representation for Void.
276 	struct SingleOrMultiValue(bool multi, T)
277 	{
278 		alias ValueType = Select!(multi,
279 			// multi==true
280 			Select!(is(T == Void),
281 				size_t, // "store" the items by keeping track of their count only.
282 				T[],
283 			),
284 
285 			// multi==false
286 			Select!(is(T == Void),
287 				Void,
288 				T[1],
289 			),
290 		);
291 
292 		// Using free functions instead of struct methods,
293 		// as structs always have non-zero size.
294 	static:
295 
296 		size_t length(in ref ValueType v) nothrow
297 		{
298 			static if (is(T == Void))
299 				static if (multi)
300 					return v; // count
301 				else
302 					return 1;
303 			else
304 				return v.length; // static or dynamic array
305 		}
306 	}
307 }
308 
309 /// Base type for ordered/unordered single-value/multi-value map/set
310 /*private*/ struct HashCollection(K, V, bool ordered, bool multi)
311 {
312 private:
313 	enum bool haveValues = !is(V == void); // Not a set
314 
315 	// The type for values used when a value variable is needed
316 	alias ValueVarType = Select!(haveValues, V, Void);
317 
318 	// The type of a single element of the values of `this.lookup`.
319 	// When ordered==true, we use size_t (index into `this.items`).
320 	alias LookupItem = Select!(ordered, size_t, ValueVarType);
321 
322 	// The type of the values of `this.lookup`.
323 	alias SM = SingleOrMultiValue!(multi, LookupItem);
324 	alias LookupValue = SM.ValueType;
325 
326 	static if (haveValues)
327 	{
328 		alias ReturnType(Fallback) = V;
329 		alias SingleIterationType = V;
330 		alias OpIndexKeyType = K;
331 		alias OpIndexValueType = V;
332 	}
333 	else
334 	{
335 		alias SingleIterationType = const(K);
336 		static if (ordered)
337 		{
338 			alias OpIndexKeyType = size_t;
339 			alias OpIndexValueType = K;
340 			alias ReturnType(Fallback) = K;
341 		}
342 		else
343 		{
344 			alias OpIndexKeyType = void;
345 			alias OpIndexValueType = void;
346 			alias ReturnType(Fallback) = Fallback;
347 		}
348 	}
349 	enum haveReturnType = !is(ReturnType!void == void);
350 	enum haveIndexing = haveValues || ordered;
351 
352 	alias IK = OpIndexKeyType;
353 	alias IV = OpIndexValueType;
354 
355 	// The contract we try to follow is that adding/removing items in
356 	// one copy of the object will not affect other copies.
357 	// Therefore, when we have array fields, make sure they are dup'd
358 	// on copy, so that we don't trample older copies' data.
359 	enum bool needDupOnCopy = ordered;
360 
361 	static if (haveReturnType)
362 	{
363 		static if (ordered)
364 			/*  */ ref inout(ReturnType!void) lookupToReturnValue(in        LookupItem  lookupItem) inout { return items[lookupItem].returnValue; }
365 		else
366 			static ref inout(ReturnType!void) lookupToReturnValue(ref inout(LookupItem) lookupItem)       { return       lookupItem             ; }
367 	}
368 
369 	// *** Data ***
370 
371 	// This is used for all key hash lookups.
372 	LookupValue[K] lookup;
373 
374 	static if (ordered)
375 	{
376 		struct Item
377 		{
378 			K key;
379 			ValueVarType value;
380 
381 			static if (haveValues)
382 				private alias returnValue = value;
383 			else
384 				private alias returnValue = key;
385 		}
386 		Item[] items;
387 
388 		enum bool canDup = is(typeof(lookup.dup)) && is(typeof(items.dup));
389 	}
390 	else
391 	{
392 		enum bool canDup = is(typeof(lookup.dup));
393 	}
394 
395 public:
396 
397 	// *** Lifetime ***
398 
399 	/// Postblit
400 	static if (needDupOnCopy)
401 	{
402 		static if (canDup)
403 			this(this)
404 			{
405 				lookup = lookup.dup;
406 				items = items.dup;
407 			}
408 		else
409 			@disable this(this);
410 	}
411 
412 	/// Create shallow copy
413 	static if (canDup)
414 	typeof(this) dup()
415 	{
416 		static if (needDupOnCopy)
417 			return this;
418 		else
419 		{
420 			typeof(this) copy;
421 			copy.lookup = lookup.dup;
422 			static if (ordered)
423 				copy.items = items.dup;
424 			return copy;
425 		}
426 	}
427 	
428 	// *** Conversions (from) ***
429 
430 	/// Construct from something else
431 	this(Input)(Input input)
432 	if (is(typeof(opAssign(input))))
433 	{
434 		opAssign(input);
435 	}
436 
437 	/// Null assignment
438 	ref typeof(this) opAssign(typeof(null) _)
439 	{
440 		clear();
441 		return this;
442 	}
443 
444 	/// Convert from an associative type
445 	ref typeof(this) opAssign(AA)(AA aa)
446 	if (haveValues
447 		&& !is(AA : typeof(this))
448 		&& is(typeof({ foreach (ref k, ref v; aa) add(k, v); })))
449 	{
450 		clear();
451 		foreach (ref k, ref v; aa)
452 			add(k, v);
453 		return this;
454 	}
455 
456 	/// Convert from a range of tuples
457 	ref typeof(this) opAssign(R)(R input)
458 	if (haveValues
459 		&& is(typeof({ foreach (ref pair; input) add(pair[0], pair[1]); }))
460 		&& !is(typeof({ foreach (ref k, ref v; input) add(k, v); }))
461 		&& input.front.length == 2)
462 	{
463 		clear();
464 		foreach (ref pair; input)
465 			add(pair[0], pair[1]);
466 		return this;
467 	}
468 
469 	/// Convert from a range of values
470 	ref typeof(this) opAssign(R)(R input)
471 	if (!haveValues
472 		&& !is(R : typeof(this))
473 		&& is(typeof({ foreach (ref v; input) add(v); })))
474 	{
475 		clear();
476 		foreach (ref v; input)
477 			add(v);
478 		return this;
479 	}
480 
481 	// *** Conversions (to) ***
482 
483 	/// Convert to bool (true if non-null)
484 	bool opCast(T)() const
485 	if (is(T == bool))
486 	{
487 		return items !is null;
488 	}
489 
490 	// *** Query (basic) ***
491 
492 	/// True when there are no items.
493 	bool empty() pure const nothrow @nogc @safe
494 	{
495 		static if (ordered)
496 			return items.length == 0; // optimization
497 		else
498 			return lookup.byKey.empty; // generic version
499 	}
500 
501 	/// Total number of items, including with duplicate keys.
502 	size_t length() pure const nothrow @nogc @safe
503 	{
504 		static if (ordered)
505 			return items.length; // optimization
506 		else
507 		static if (!multi)
508 			return lookup.length; // optimization
509 		else // generic version
510 		{
511 			size_t result;
512 			foreach (ref v; lookup.byValue)
513 				result += SM.length(v);
514 			return result;
515 		}
516 	}
517 
518 	// *** Query (by key) ***
519 
520 	/// Check if item with this key has been added.
521 	/// When applicable, return a pointer to the last value added with this key.
522 	Select!(haveReturnType, inout(ReturnType!void)*, bool) opBinaryRight(string op : "in")(auto ref in K key) inout
523 	{
524 		enum missValue = select!haveReturnType(null, false);
525 
526 		auto p = key in lookup;
527 		if (!p)
528 			return missValue;
529 
530 		static if (haveReturnType)
531 			return &lookupToReturnValue((*p)[$-1]);
532 		else
533 			return true;
534 	}
535 
536 	/// Index operator.
537 	/// The key must exist. Indexing with a key which does not exist
538 	/// is an error.
539 	static if (haveIndexing)
540 	ref inout(IV) opIndex()(auto ref IK k) inout
541 	{
542 		static if (haveValues)
543 			return lookupToReturnValue(lookup[k][$-1]);
544 		else
545 			return items[k].returnValue;
546 	}
547 
548 	/// Retrieve last value associated with key, or `defaultValue` if none.
549 	static if (haveIndexing)
550 	auto ref inout(IV) get()(auto ref IK k, auto ref inout(IV) defaultValue) inout
551 	{
552 		static if (haveValues)
553 		{
554 			auto p = k in lookup;
555 			return p ? lookupToReturnValue((*p)[$-1]) : defaultValue;
556 		}
557 		else
558 			return k < items.length ? items[k].returnValue : defaultValue;
559 	}
560 
561 	// *** Query (ranges) ***
562 
563 	/// Return a range which iterates over key/value pairs.
564 	static if (haveValues)
565 	auto byKeyValue(this This)()
566 	{
567 		static if (ordered)
568 			return items;
569 		else
570 		{
571 			return lookup
572 				.byKeyValue
573 				.map!(pair =>
574 					pair
575 					.value
576 					.map!(value => KeyValuePair!(K, V)(pair.key, value))
577 				)
578 				.joiner;
579 		}
580 	}
581 
582 	/// ditto
583 	static if (haveValues)
584 	auto byPair(this This)()
585 	{
586 		return byKeyValue
587 			.map!(pair => tuple!("key", "value")(pair.key, pair.value));
588 	}
589 
590 	/// Return a range which iterates over all keys.
591 	/// Duplicate keys will occur several times in the range.
592 	auto byKey(this This)()
593 	{
594 		static if (ordered)
595 		{
596 			static ref getKey(MItem)(ref MItem item) { return item.key; }
597 			return items.map!getKey;
598 		}
599 		else
600 		{
601 			return lookup
602 				.byKeyValue
603 				.map!(pair =>
604 					pair.key.repeat(SM.length(pair.value))
605 				)
606 				.joiner;
607 		}
608 	}
609 
610 	/// Return a range which iterates over all values.
611 	static if (haveValues)
612 	auto byValue(this This)()
613 	{
614 		static if (ordered)
615 		{
616 			static ref getValue(MItem)(ref MItem item) { return item.value; }
617 			return items.map!getValue;
618 		}
619 		else
620 		{
621 			return lookup
622 				.byKeyValue
623 				.map!(pair =>
624 					pair
625 					.value
626 				)
627 				.joiner;
628 		}
629 	}
630 
631 	@property auto keys(this This)() { return byKey.array; }
632 	@property auto values(this This)() { return byValue.array; }
633 
634 	// *** Query (search by key) ***
635 
636 	static if (ordered)
637 	private size_t[] indicesOf()(auto ref K k)
638 	{
639 		auto p = k in lookup;
640 		return p ? (*p)[] : null;
641 	}
642 
643 	/// Return the number of items with the given key.
644 	/// When multi==false, always returns 0 or 1.
645 	size_t count()(auto ref K k)
646 	{
647 		static if (ordered)
648 			return indicesOf(k).length;
649 		else
650 		{
651 			auto p = k in lookup;
652 			return p ? SM.length(*p) : 0;
653 		}
654 	}
655 
656 	/// Return a range with all values with the given key.
657 	/// If the key is not present, returns an empty range.
658 	static if (haveValues)
659 	auto byValueOf(this This)(auto ref K k)
660 	{
661 		static if (ordered)
662 			return indicesOf(k).map!(index => items[index].value);
663 		else
664 			return valuesOf(k);
665 	}
666 
667 	/// Return an array with all values with the given key.
668 	/// If the key is not present, returns an empty array.
669 	static if (haveValues)
670 	V[] valuesOf()(auto ref K k)
671 	{
672 		static if (ordered)
673 			return byValueOf(k).array;
674 		else
675 		{
676 			static if (multi)
677 				return lookup.get(k, null);
678 			else
679 			{
680 				auto p = k in lookup;
681 				return p ? (*p)[] : null;
682 			}
683 		}
684 	}
685 
686 	static if (haveValues)
687 	deprecated alias getAll = valuesOf;
688 
689 	// *** Iteration ***
690 
691 	private int opApplyImpl(this This, Dg)(Dg dg)
692 	{
693 		enum single = arity!dg == 1;
694 
695 		int result = 0;
696 
697 		static if (ordered)
698 		{
699 			foreach (ref item; items)
700 			{
701 				static if (single)
702 					result = dg(item.returnValue);
703 				else
704 					result = dg(item.key, item.value);
705 				if (result)
706 					break;
707 			}
708 		}
709 		else
710 		{
711 			foreach (ref key, ref values; lookup)
712 				static if (haveValues)
713 				{
714 					foreach (ref value; values)
715 					{
716 						static if (single)
717 							result = dg(value);
718 						else
719 							result = dg(key, value);
720 						if (result)
721 							break;
722 					}
723 				}
724 				else
725 				{
726 					foreach (iteration; 0 .. SM.length(values))
727 					{
728 						static assert(single);
729 						result = dg(key);
730 						if (result)
731 							break;
732 					}
733 				}
734 		}
735 		return result;
736 	}
737 
738 	/// Iterate over keys (sets) / values (maps).
739 	int opApply(int delegate(ref SingleIterationType x) dg)
740 	{
741 		return opApplyImpl(dg);
742 	}
743 
744 	/// ditto
745 	int opApply(int delegate(const ref SingleIterationType x) dg) const
746 	{
747 		return opApplyImpl(dg);
748 	}
749 
750 	static if (haveValues)
751 	{
752 		/// Iterate over keys and values.
753 		int opApply(int delegate(const ref K k, ref V v) dg)
754 		{
755 			return opApplyImpl(dg);
756 		}
757 
758 		/// ditto
759 		int opApply(int delegate(const ref K k, const ref V v) dg) const
760 		{
761 			return opApplyImpl(dg);
762 		}
763 	}
764 
765 	// *** Mutation (addition) ***
766 
767 	private enum AddMode
768 	{
769 		add,     /// Always add value
770 		replace, /// Replace all previous values
771 		require, /// Only add value if it did not exist before
772 	}
773 
774 	private ref ReturnType!void addImpl(AddMode mode, AK, GV)(ref AK key, scope GV getValue)
775 	if (is(AK : K))
776 	{
777 		static if (ordered)
778 		{
779 			size_t addedIndex;
780 
781 			static if (multi && mode == AddMode.add)
782 			{
783 				addedIndex = items.length;
784 				lookup[key] ~= addedIndex;
785 				items ~= Item(key, getValue());
786 			}
787 			else
788 			{
789 				lookup.updateVoid(key,
790 					delegate LookupValue()
791 					{
792 						addedIndex = items.length;
793 						items ~= Item(key, getValue());
794 						return [addedIndex];
795 					},
796 					delegate void(ref LookupValue existingIndex)
797 					{
798 						addedIndex = existingIndex[0];
799 						static if (mode != AddMode.require)
800 						{
801 							static if (multi)
802 							{
803 								static assert(mode == AddMode.replace);
804 								existingIndex = existingIndex[0 .. 1];
805 							}
806 							items[addedIndex].value = getValue();
807 						}
808 					});
809 			}
810 
811 			return items[addedIndex].returnValue;
812 		}
813 		else // ordered
814 		{
815 			static if (haveValues)
816 			{
817 				static if (mode == AddMode.require)
818 					return (lookup.require(key, [getValue()]))[0];
819 				else
820 				static if (multi && mode == AddMode.add)
821 					return (lookup[key] ~= getValue())[$-1];
822 				else
823 					return (lookup[key] = [getValue()])[0];
824 			}
825 			else
826 			{
827 				static if (multi)
828 				{
829 					static if (mode == AddMode.require)
830 						lookup.require(key, 1);
831 					else
832 					static if (mode == AddMode.add)
833 						lookup[key]++;
834 					else
835 						lookup[key] = 1;
836 				}
837 				else
838 					lookup[key] = LookupValue.init;
839 				// This branch returns void, as there is no reasonable
840 				// ref to an AA key that we can return here.
841 			}
842 		}
843 	}
844 
845 	/*private*/ template addSetFunc(AddMode mode)
846 	{
847 		static if (haveValues)
848 		{
849 			ref ReturnType!void addSetFunc(AK, AV)(auto ref AK key, auto ref AV value)
850 			if (is(AK : K) && is(AV : V))
851 			{
852 				return addImpl!mode(key, () => value);
853 			}
854 		}
855 		else
856 		{
857 			ref ReturnType!void addSetFunc(AK)(auto ref AK key)
858 			if (is(AK : K))
859 			{
860 				ValueVarType value; // void[0]
861 				return addImpl!mode(key, () => value);
862 			}
863 		}
864 	}
865 
866 	/// Add an item.
867 	alias add = addSetFunc!(AddMode.add);
868 
869 	/// Ensure a key exists (with the given value).
870 	/// When `multi==true`, replaces all previous entries with this key.
871 	/// Otherwise, behaves identically to `add`.
872 	alias set = addSetFunc!(AddMode.replace);
873 
874 	/// Add `value` only if `key` is not present.
875 	static if (haveValues)
876 	ref V require()(auto ref K key, lazy V value = V.init)
877 	{
878 		return addImpl!(AddMode.require)(key, () => value);
879 	}
880 
881 	deprecated alias getOrAdd = require;
882 
883 	private alias UpdateFuncRT(U) = typeof({ U u = void; V v = void; return u(v); }());
884 
885 	/// If `key` is present, call `update` for every value;
886 	/// otherwise, add new value with `create`.
887 	static if (haveValues)
888 	private void update(C, U)(auto ref K key, scope C create, scope U update)
889 	if (is(typeof(create()) : V) && (is(UpdateFuncRT!U : V) || is(UpdateFuncRT == void)))
890 	{
891 		static if (ordered)
892 		{
893 			lookup.updateVoid(key,
894 				delegate LookupValue()
895 				{
896 					auto addedIndex = items.length;
897 					items ~= Item(key, create());
898 					return [addedIndex];
899 				},
900 				delegate void(ref LookupValue existingIndex)
901 				{
902 					foreach (i; existingIndex)
903 						static if (is(UpdateFuncRT!U == void))
904 							update(items[i].value);
905 						else
906 							items[i].value = update(items[i].value);
907 				});
908 		}
909 		else // ordered
910 		{
911 			lookup.updateVoid(key,
912 				delegate LookupValue ()
913 				{
914 					return [create()];
915 				},
916 				delegate void (ref LookupValue values)
917 				{
918 					foreach (ref value; values)
919 						static if (is(UpdateFuncRT!U == void))
920 							update(value);
921 						else
922 							value = update(value);
923 				});
924 		}
925 	}
926 
927 	// *** Mutation (editing) ***
928 
929 	static if (haveIndexing)
930 	{
931 		static if (haveValues)
932 		{
933 			/// Same as `set(k, v)`.
934 			ref IV opIndexAssign()(auto ref IV v, auto ref IK k)
935 			{
936 				return set(k, v);
937 			}
938 
939 			/// Perform cumulative operation with value
940 			/// (initialized with `.init` if the key does not exist).
941 			ref IV opIndexOpAssign(string op)(auto ref IV v, auto ref IK k)
942 			{
943 				auto pv = &require(k);
944 				return mixin("(*pv) " ~ op ~ "= v");
945 			}
946 
947 			/// Perform unary operation with value
948 			/// (initialized with `.init` if the key does not exist).
949 			ref IV opIndexUnary(string op)(auto ref IK k)
950 			{
951 				auto pv = &require(k);
952 				mixin("(*pv) " ~ op ~ ";");
953 				return *pv;
954 			}
955 		}
956 		else
957 		{
958 			private ref K editIndex(size_t index, scope void delegate(ref K) edit)
959 			{
960 				auto item = &items[index];
961 				K oldKey = item.key;
962 				auto pOldIndices = oldKey in lookup;
963 				assert(pOldIndices);
964 
965 				edit(item.key);
966 
967 				// Add new value
968 
969 				lookup.updateVoid(item.key,
970 					delegate LookupValue()
971 					{
972 						// New value did not exist.
973 						if ((*pOldIndices).length == 1)
974 						{
975 							// Optimization - migrate the Indexes value
976 							assert((*pOldIndices)[0] == index);
977 							return *pOldIndices;
978 						}
979 						else
980 							return [index];
981 					},
982 					delegate void(ref LookupValue existingIndex)
983 					{
984 						// Value(s) with the new key already existed
985 						static if (multi)
986 							existingIndex ~= index;
987 						else
988 							assert(false, "Collision after in-place edit of a non-multi ordered set element");
989 					});
990 
991 				// Remove old value
992 
993 				if ((*pOldIndices).length == 1)
994 					lookup.remove(oldKey);
995 				else
996 				static if (multi)
997 					*pOldIndices = (*pOldIndices).remove!(i => i == index);
998 				else
999 					assert(false); // Should be unreachable (`if` above will always be true)
1000 
1001 				return item.key;
1002 			}
1003 
1004 			/// Allows writing to ordered sets by index.
1005 			/// The total number of elements never changes as a result
1006 			/// of such an operation - a consequence of which is that
1007 			/// if multi==false, changing the value to one that's
1008 			/// already in the set is an error.
1009 			ref IV opIndexAssign()(auto ref IV v, auto ref IK k)
1010 			{
1011 				static if (haveValues)
1012 					return set(k, v);
1013 				else
1014 					return editIndex(k, (ref IV e) { e = v; });
1015 			}
1016 
1017 			/// Perform cumulative operation with value at index.
1018 			ref IV opIndexOpAssign(string op)(auto ref VV v, auto ref IK k)
1019 			{
1020 				return editIndex(k, (ref IV e) { mixin("e " ~ op ~ "= v;"); });
1021 			}
1022 
1023 			/// Perform unary operation with value at index.
1024 			ref IV opIndexUnary(string op)(auto ref IK k)
1025 			{
1026 				return editIndex(k, (ref IV e) { mixin("e " ~ op ~ ";"); });
1027 			}
1028 		}
1029 	}
1030 
1031 	// *** Mutation (removal) ***
1032 
1033 	/// Removes all elements with the given key.
1034 	bool remove()(auto ref K key)
1035 	{
1036 		static if (ordered)
1037 		{
1038 			auto p = key in lookup;
1039 			if (!p)
1040 				return false;
1041 
1042 			auto targets = *p;
1043 			foreach (target; targets)
1044 			{
1045 				items = items.remove!(SwapStrategy.stable)(target);
1046 				foreach (ref k, ref vs; lookup)
1047 					foreach (ref v; vs)
1048 						if (v > target)
1049 							v--;
1050 			}
1051 			auto success = lookup.remove(key);
1052 			assert(success);
1053 			return true;
1054 		}
1055 		else
1056 			return lookup.remove(key);
1057 	}
1058 
1059 	/// Removes all elements.
1060 	void clear()
1061 	{
1062 		lookup.clear();
1063 		static if (ordered)
1064 			items.length = 0;
1065 	}
1066 }
1067 
1068 /// An associative array which retains the order in which elements were added.
1069 alias OrderedMap(K, V) = HashCollection!(K, V, true, false);
1070 
1071 unittest
1072 {
1073 	alias M = OrderedMap!(string, int);
1074 	M m;
1075 	m["a"] = 1;
1076 	m["b"] = 2;
1077 	m["c"] = 3;
1078 	assert(m.length == 3);
1079 	assert("a" in m);
1080 	assert("d" !in m);
1081 
1082 	{
1083 		auto r = m.byKeyValue;
1084 		assert(!r.empty);
1085 		assert(r.front.key == "a");
1086 		r.popFront();
1087 		assert(!r.empty);
1088 		assert(r.front.key == "b");
1089 		r.popFront();
1090 		assert(!r.empty);
1091 		assert(r.front.key == "c");
1092 		r.popFront();
1093 		assert(r.empty);
1094 	}
1095 
1096 	assert(m.byKey.equal(["a", "b", "c"]));
1097 	assert(m.byValue.equal([1, 2, 3]));
1098 	assert(m.byKeyValue.map!(p => p.key).equal(m.byKey));
1099 	assert(m.byKeyValue.map!(p => p.value).equal(m.byValue));
1100 	assert(m.keys == ["a", "b", "c"]);
1101 	assert(m.values == [1, 2, 3]);
1102 
1103 	{
1104 		const(M)* c = &m;
1105 		assert(c.byKey.equal(["a", "b", "c"]));
1106 		assert(c.byValue.equal([1, 2, 3]));
1107 		assert(c.keys == ["a", "b", "c"]);
1108 		assert(c.values == [1, 2, 3]);
1109 	}
1110 
1111 	m.byValue.front = 5;
1112 	assert(m.byValue.equal([5, 2, 3]));
1113 
1114 	m.remove("a");
1115 	assert(m.length == 2);
1116 	m["x"] -= 1;
1117 	assert(m["x"] == -1);
1118 	++m["y"];
1119 	assert(m["y"] == 1);
1120 	auto cm = cast(const)m.dup;
1121 	foreach (k, v; cm)
1122 		if (k == "x")
1123 			assert(v == -1);
1124 }
1125 
1126 unittest
1127 {
1128 	OrderedMap!(string, int) m;
1129 	m["a"] = 1;
1130 	m["b"] = 2;
1131 	m.remove("a");
1132 	assert(m["b"] == 2);
1133 }
1134 
1135 unittest
1136 {
1137 	OrderedMap!(string, int) m;
1138 	m["a"] = 1;
1139 	auto m2 = m;
1140 	m2.remove("a");
1141 	m2["b"] = 2;
1142 	assert(m["a"] == 1);
1143 }
1144 
1145 unittest
1146 {
1147 	OrderedMap!(string, int) m;
1148 	m["a"] = 1;
1149 	m["b"] = 2;
1150 	auto m2 = m;
1151 	m.remove("a");
1152 	assert(m2["a"] == 1);
1153 }
1154 
1155 unittest
1156 {
1157 	class C {}
1158 	const OrderedMap!(string, C) m;
1159 	cast(void)m.byKeyValue;
1160 }
1161 
1162 unittest
1163 {
1164 	OrderedMap!(int, int) m;
1165 	m.update(10,
1166 		{ return 20; },
1167 		(ref int k) { k++; return 30; },
1168 	);
1169 	assert(m.length == 1 && m[10] == 20);
1170 	m.update(10,
1171 		{ return 40; },
1172 		(ref int k) { k++; return 50; },
1173 	);
1174 	assert(m.length == 1 && m[10] == 50);
1175 }
1176 
1177 // https://issues.dlang.org/show_bug.cgi?id=18606
1178 unittest
1179 {
1180 	struct S
1181 	{
1182 		struct T
1183 		{
1184 			int foo;
1185 			int[] bar;
1186 		}
1187 
1188 		OrderedMap!(int, T) m;
1189 	}
1190 }
1191 
1192 unittest
1193 {
1194 	OrderedMap!(string, int) m;
1195 	static assert(is(typeof(m.keys)));
1196 	static assert(is(typeof(m.values)));
1197 }
1198 
1199 /// Like assocArray
1200 auto orderedMap(R)(R input)
1201 if (input.front.length == 2)
1202 {
1203 	alias K = typeof(input.front[0]);
1204 	alias V = typeof(input.front[1]);
1205 	return OrderedMap!(K, V)(input);
1206 }
1207 
1208 unittest
1209 {
1210 	auto map = 3.iota.map!(n => tuple(n, n + 1)).orderedMap;
1211 	assert(map.length == 3 && map[1] == 2);
1212 }
1213 
1214 // ***************************************************************************
1215 
1216 /// Helper/wrapper for void[0][T]
1217 alias HashSet(T) = HashCollection!(T, void, false, false);
1218 
1219 unittest
1220 {
1221 	HashSet!int s;
1222 	assert(s.length == 0);
1223 	assert(!(1 in s));
1224 	assert(1 !in s);
1225 	s.add(1);
1226 	assert(1 in s);
1227 	assert(s.length == 1);
1228 	foreach (k; s)
1229 		assert(k == 1);
1230 	s.remove(1);
1231 	assert(s.length == 0);
1232 
1233 	s.add(1);
1234 	auto t = s.dup;
1235 	s.add(2);
1236 	assert(t.length==1);
1237 	t.remove(1);
1238 	assert(t.length==0);
1239 }
1240 
1241 auto toSet(R)(R r)
1242 {
1243 	alias E = ElementType!R;
1244 	return HashSet!E(r);
1245 }
1246 
1247 unittest
1248 {
1249 	auto set = [1, 2, 3].toSet();
1250 	assert(2 in set);
1251 	assert(4 !in set);
1252 }
1253 
1254 // ***************************************************************************
1255 
1256 alias OrderedSet(T) = HashCollection!(T, void, true, false);
1257 
1258 unittest
1259 {
1260 	OrderedSet!int set;
1261 
1262 	assert(1 !in set);
1263 	set.add(1);
1264 	assert(1 in set);
1265 	set.remove(1);
1266 	assert(1 !in set);
1267 
1268 	set.add(1);
1269 	set.clear();
1270 	assert(1 !in set);
1271 
1272 	set = set.init;
1273 	assert(!set);
1274 	set.add(1);
1275 	assert(!!set);
1276 
1277 	assert(set[0] == 1);
1278 	set[0] = 2;
1279 	assert(set[0] == 2);
1280 	assert(1 !in set);
1281 	assert(2 in set);
1282 
1283 	assert(set.length == 1);
1284 	set.remove(2);
1285 	assert(set.length == 0);
1286 
1287 	set.add(1);
1288 	auto set2 = set;
1289 	set.remove(1);
1290 	set.add(2);
1291 	assert(1 !in set && 2 in set);
1292 	assert(1 in set2 && 2 !in set2);
1293 
1294 	foreach (v; set)
1295 		assert(v == 2);
1296 }
1297 
1298 // ***************************************************************************
1299 
1300 /// An object which acts mostly as an associative array,
1301 /// with the added property of being able to hold keys with
1302 /// multiple values. These are only exposed explicitly and
1303 /// through iteration
1304 alias MultiAA(K, V) = HashCollection!(K, V, false, true);
1305 
1306 unittest
1307 {
1308 	alias MASS = MultiAA!(string, int);
1309 	MASS aa;
1310 	aa.add("foo", 42);
1311 	assert(aa["foo"] == 42);
1312 	assert(aa.valuesOf("foo") == [42]);
1313 	assert(aa.byPair.front.key == "foo");
1314 
1315 	auto aa2 = MASS([tuple("foo", 42)]);
1316 	aa2 = ["a":1,"b":2];
1317 }